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Abstract-The problem of natural convection in a shallow annular cavity with differ~tially heated inner 
and outer walls is considered. Compared to the two-d~m~siona1 problem Cormack, I.4 and ImbergerC31, 
the flow structure differs in two important ways. First the core flow is only parallel at O(1) in the annuius. 
Second, the finite radius of the inner cylinder provides a third length scale in addition to h and (r, - r,,). 
Therefore, the flow consists of two distinct regimes in the asymptotic limit, A = h/(r, - q,) --t 0. The solution 
in the core is developed correct to O(A’), and asymptotic results are then obtained for the Nusselt number, 

valid to 0(A3). 
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NOMENC~TURE 

cavity aspect ratio, = h/(r, - rk) ; 
end solution coefficients ; 
coefficients which are functions of Gr and 
Pr; 

heat capacity; 
core solutions; 
power function for core solution, equa- 
tion (28a) ; 
power function for end solution ; 
gravitational acceleration constant ; 
core solutions ; 
power function for core solution, equa- 
tion (28b); 
Grashof number, = g/?p( q - T,),/v* ; 
cavity height; 
core solutions; 
power function for core solution, qua- 
tion (28~); 

J(4 B), 
ad aB a3 aA 

Jacobian, = Z Z - F Z ; 
x 

thermal conductivity; 
core solutions; 
cavity length, = r, - r,; 

m&Z;p), n&?;p), core solutions; 

Nu, Nusselt number, = ~~2~~r~(~ - T,); 
Pr, 
Q, 

Prandtl number, = c,p/k; 

heat flux ; 

rc9 rh5 cold- and hot-end wall radii ; 
T,, Th, cold- and hot-end wall temperatures; 
4 w, horizontal and vertical velocity 

components; 
x, 2, horizonta1 and vertical coordinates non- 

dimension~ized by h ; 
L 
X, horizontal coordinate in the core, = Ax. 

*Since 1 April 1978 with MTU-Miinchen GmbH, P.O. Box 
50 06 40, 8000 Munich 50, West Germany. 

Greek symbols 

B* coefficient of thermal expansion ; 

6, length scale ratio, = r,,/h; 

4 non-dimensional temperature, 

= (T- T,)/(T, - T,); 
A, thermal conductivity; 

& dynamic viscosity; 

G:. 
kinematic viscosity ; 
two-dimensional Laplace operator, 

a2 
=$+s; 

g, horizontal distance from hot end of ca- 
vity, = A-’ - X; 

Pt annulus aspect ratio, = Ad; 

0, vorticity ; 

$4 stream function. 

Superscripts 
* 

, perturbated quantity ; 
I basic state; 

6 cold ; 
h, hot ; 
4 order of approximation, i = 0, 1,2.. . . 

Subscripts 

C, cold ; 
h, hot; 

4 order of approximation, i = 0, 1,2.. ,, 

1. INTRODUCTION 

THE PROBLEM of gravitational convection in a shallow, 
two-dimensional cavity with a temperature differential 
maintained between the side-walls has been studied 
recently by several authors because of its potential as a 
model for certain aspects of atmospheric circulation 
(Hadley cells; cf. Hart[l]); and for the dispersion of 
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pollutants or heat wastes in estuary or other shallow 
bodies of water (cf. Cormack, Stone and Leal[2]). In 
particular. Hart[l] examined the stability of the basic. 
unidirectional flow which occurs in the central domain 

when the topand bottom of thecavity are insulated. At 

nearly the same time, Cormack. Lea1 and Imberger[3] 
showed that an asymptotically rigorous solution could 
be obtained (also for insulated top and bottom) by 
using the height-to-width aspect ratio, A. as a small 

parameter for arbitrary but fixed values of the Grashof 
and Prandtf numbers, Gr and Pr. This solution 
consisted ofa ‘core’ flow over the interior of the cavity, 
which was matched in the usual asymptotic sense with 
solutions in the regions within O(h) of the side-wails. 

Here, h denotes the height of the cell. The unusual 
feature of the solution, which was qualitatively verified 

both by experiment[il] and by numerical solution of 

the full governing equations (C’ormack, Lea1 and 
Seinfeld[S]), was that the Row in the core remained 
parallel and unidirectional to all orders in the smati 

parameter A. Although it seemed clear that this result 

was a direct consequence of the two-dimensional 

geometry and of the simple insulating boundary 
conditions, the degree of sensitivity to those conditions 

was not at all evident nor, more importantly. was the 
effect of deviations from the parallel how structure on 
the efficiency of heat flow away from the heated 
boundary. The latter, measured in dimensioniess terms 

by the relationship between Nusselt number (heat 

flux), Grashof number (AT) and the other parameters 
(.A, Pr) of the system, is particularly significant due to 

the obvious relationship between Nu and the effective- 
ness of pollutant or heat waste dispersion in a shallow 

estuary. 
The effect of the thermal boundary conditions at the 

top of the cavity was investigated in some detail by 
Cormack, Stone and Leal[Z]. The present communi- 
cation is concerned with the effects ofcavity geometry. 
In particular, we consider the simplest generalization 

from the 2-D case of Cormack, Leai and Imberger[3] 
to a shallow annular cavity with the inner cylinder 
maintained at a temperature, Thr and the outer at a 

lower temperature. 7;. This problem includes the 
original two-dimensi(~nai solutio~t as a limiting case, 

but differs significantly in Row structure away from 
this limit. Specifically. we will see that the’parallel flow’ 

assumption in the core region (i.e. radial how for this 
annular geometry) is only adequate at the lowest order 
approximation. In this sense. the problem of con- 

vection in a shallow annular cavity provides a useful 
model for illustration of the type of effects engendered 
by flow geometries which are not two-dimensional. 

The problem is also of some direct interest on its 

own as a crude model for the gravitational circulation 
and efficiency of heat release associated with a source 
of heat in the center of a lake or estuary. For example, 
one might imagine hot eMuent released at the bottom 
with negligible momentum. In addition. the annular 
geometry is sometimes used, with the central cylinder a 
heated wire, as a ‘conduction’ cell for determination of 

thermal conductivities. The present analysis provides 
an analytical solution for u priori estimation of the 
importance ofconvection effects at steady state in such 
a system. 

The analysis which follows is similar m many 
respects to that which was described in detail by- 

Cormack, Lea1 and Imberger[3]. Thus, wherever 
possible we present an abbreviated description of the 
method in the present paper. Unlike Cormack E( 

a/$3], we do nor obtain complete solutions in the end 
regions but rather concentrate on the core velocity and 
temperature distributions and on the ov*erall Nusselr 
number which is obtained through terms of Cf(A3i. 
Another difference is the fact that the radius of the 
inner cylinder provides a third length scale (in addition 
to the height of the cavity, 11, and the separation 
distance, rc - r,,). Thus, in addition to the aspect ratio. 
A = h;!(r, - rh), which we assume to he small. there is a 

second dimensionless parameter 

()Z ” 

ir 

which enters the calculations. Obviously. the 
combination 

defines yet a third length scale ratio. Any two of A, ii 
and I) are independent. We consider two distinct 

problems. In the first A --* 0, with p = O(1) (and thus 
6 B 1 for A << l), while, in the second, 11 -+ 0 with 
d = 0( 1) (and thus p -+ 0 for A + 0). The latter is the 
more interesting from the point of view of the direct 

‘applications’ which were noted above. However. the 
former encompasses the 2-D problem as the limiting 

case of S ----t -K (with rl + 0). Surprisingly in view of 
apparent differences in the governing equations and 
analysis for the two cases, we will see that the core 

solutions are identical through the first two levels of 
approximation. 

2. MATHEMATICAL FORMULATION 01; ‘ME PROBLEM 

We consider a closed annular cavity with inner 
radius rh, outer radius rc and height h, as shown 

schematically in Fig. l(a). The cavity contains a 
Newtonian fluid, and the inner and outer walls are held 
at different but uniform temperatures T, and r, with 

FIG. l(a). Schematic diagram of system 
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q > T,. The top and bottom are insulated, and all 
surfaces are rigid, no-slip boundaries. 

The flow which results from heating the inner 
cylinder is axisymmetric, and the governing differential 
equations and boundary conditions are easily ob- 
tained, subject to the Boussinesq approximation, from 
the full, steady-state equations of motion and thermal 
energy expressed in terms of cylindrical coordinates. 
We denote the horizontal and vertical velocity com- 
ponents by u and w. Thus, nondimensionalizing in the 
manner of Cormack et aL[3] with I= rh - r,, and 
introducing a streamfunction 

1 a+ 1 a+ u= - ~- 
x+s aZ’ 

w=--.- 
x+6 ax (1) 

the governing equations and boundary conditions can 
be written in the form 

= - g + AV;w + A2 
au 
& - (p +“ax,2 > 

(2) 
A w=--vg+ 

p + Ax 
(3) 

Gr Pr 
A2 A 

~ J($,@ = V;e + ___ - 
p + Ax 

ae (4) p + Ax ax 

a$ ae $=-_=-_=O atz=O,l 
az aZ (54 

t,b=az=O, 0=1-Ax atx=O,A-‘. (5b) 

Here, 
x z (r - r&/h 

The dimensionless parameters which appear are 

Gr = $/I(& - T,) (Grashof number) 

Pr = c&k (Prandtl number) 

A = h/(r, - r,,) (cavity aspect ratio) 

p = A6 = rh/(rc - r,,) (annulus aspect ratio). 

Comparison with the two-dimensional problem 
of [3] shows the presence of one additional para- 
meter in the present case, namely the aspect ratio p (or, 
alternatively, S = rdh). 

We seek solutions of equations (2)-(5) for arbitrary, 
but fixed, values of Gr and Pr in the limit as the cavity 
becomes very shallow relative to its breadth, i.e. as 
A + 0. There are two cases of interest for the geometric 
parameter p. In the first, the ratio of the radius r,, to the 

height h is held fixed, i.e. 6 = O(1) so that p + 0 as 
A + 0. In the second, p is held fixed as A --* 0; thus 
6 -+ co. This second case includes the 2-D limit for 
p >> 1. We shall see that the detailed analysis for the 
two limits, 6 = O(1) and p = O(l), is fundamentally 
different. It is therefore a surprise that the solutions in 
the core region are identical to the level of approxi- 
mation of the present analysis. 

Following Cormack et al. [3], we seek solutions of 
equations (2)-(4) which exhibit a parallel flow struc- 
ture to at least a first level of approximation (i.e. to 0( 1) 
in A). The boundary conditions (5b) at x = 0, A-’ 
show clearly that a solution of this type is only possible 
in the core of the cavity, away from the end-walls. 
Thus, the central core solution must be supplemented 
by separate solutions in the two end-regions, i.e. near 
r = r, and r,,, which match with the core solution in the 
usual asymptotic sense as A --* 0. 

The governing equations (2)-(4) can be expressed in 
a form which is more appropriate for the core region 
by noting that a parallel flow structure must cor- 
respond to a characteristic length scale (r, - rh) in the 
x-direction, rather than h as assumed in the non- 
dimensionalization which led to equations (2)-(S). 
Thus, it is convenient to rescale the equations accord- 
ing to 

2 = Ax and 4 = A$. 

For ease in distinguishing core variables from those 
in the end-regions, we also use @and&in place of 0 and 
o. With these changes, the governing equations (2)-(4) 
can be re-expressed in a form suitable to the core- 
region. 

A 

Gr A2 15(&ij)+W- = aC ai? a% 
p+i (p + i)2 a2 1 -z+s 

Gr Pr 

2- 

+ A2 E+ 
ai2 

in which 2 and p are both O(1). As written, these 
equations are suitable for the limiting problem, A -+ 0, 
p = O(1). To transform to a form appropriate to the 
case A + 0, 6 = O(l), we can introduce 6 (= p/A) in 
place of p. However, at the level of approximation 
which we will consider, this is equivalent to simply 
putting p = 0 and solutions for both cases are thus 
obtainable directly from equations (6)-(8). The fun- 
damental distinction between p = O(1) and 6 = O(1) 
does not appear in the governing equations for the core 
region. It is only in the vicinity of the end-walls that the 
difference between the two cases actually plays an 
important role in the governing equations. In the core 
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region we thus seek solutions of equations (6)-(g) in 
the form of an asymptotic expansion 

for both p = O(1) and 6 = O(1). The governing equa- 
tions at O(l), are just 

(7& c’%& 

8-2 dz= 
(loa) 

1 P$” 

Although the equations and boundary conditions in 
the core are independent of the choice p = O(1) or 
6 = O(l), it is still possible that the solutions for these 
two cases may differ due to differences in the matching 
conditions with the end-region solutions. 

In the end-regions, the characteristic length scale is 
O(h) in both coordinate directions, as already assumed 
in equations (2)-(4). On the other hand, if a parallel 
flow structure exists in the core at O(l), all streamlines 
must enter the end-regions, and it is clear that the 
scaling for horizontal velocity must be the same as in 
the core. Thus, introducing 

into equations (2)(4), we obtain a form for the 
governing equations which is appropriate for the end- 
regions (r - rh and r - r,) 

(11) 
w = _ _L.__qq + ._A-- - ?II; 

p + Ax (p + Ax)’ iix 
(121 

and 

These equations are suitable for the case in which 
A -+ 0 with p = O(1). It will be noted that a consider- 
able simplification takes place if this limit is applied 
directly to equations (1 l)-( 13), and this is reflected by 
the simple governing equations which appear at each 
order in A when an asymptotic representation of the 
form 

i=O 

is adopted as required by the conditions of matching 
with equation (9). At O(l), these equations are simply 

I%* 
- = 0; 
2.X 

v:a, = 0. 

In order to obtain a form of the governing equations 
(1 i)-( 13) which is suitable for the limiting problem 
A +O with 6 = O(l), we introduce p = A6 and then 
note from (12) that o = A-‘&i in order that (ij = O( 1). 
It thus follows that 

GrPrJ($,@) = ViH t y & $. (18) 

Unlike the end-region equations (1 l)--( 13) for p = 0 
f l), these equations for 6 = O( 1) are independent of A. 
Thus, in spite of the fact that the conditions for 
matching still suggest an expansion of the form 

for 6 = O(l), the governing equations at 0( 1) appear to 
be the full nonlinear equations (16) (18) rather than 
the very simple equations (15) which arose in the case 
A --t 0 fp = O(1)). Fortunately. when 6 = O(l), the 
core solution provides a second small parameter [ln 
(p/l + p)]- ’ at each order in it and the end-region 
problem simplifies a great deal. 

3. SOLUTION OF THE PROBLEM 

We now turn to the solution of our problem for 
A --* 0 and either p = O(l) or b = O( 1). In both cases, 
the core equations are (6)--(s) with the expansion (9) 
and O( 1) equations (lOa)--( 1Oc). The end-regions are 
governed by equations (11))(13) and (IS)-(Is), re- 
spectively, with asymptotic expansions (14) and (19). 
The solutions in the core and end-regions must be 
matched according to 

(20) 

and 

with<=A-l--x. 
The solution scheme is similar, in some respects, to 
that of Cormack et al. [3] for the 2-D case. However, 
unlike the 2-D problem where a single solution was 
found to be valid at all orders in A for the core, the 3-D 
problem must be solved step-by-step in A for both the 
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core and end-regions. In addition, in the present paper, 
we focus our attention on the Nusselt number which 
gives the overall rate of heat transport from the hot 
cylinder wall to the cold one, and thus adopt a solution 
scheme which does not require a full resolution of the 
end-region solutions. We begin with the core solution 
at O(1) which is common to both problems 6 = O(1) 
and p = O(1). It is then necessary to examine higher- 
order core terms and solutions in the ends separately 
for these two cases. 

(a) Car? solutions at O(1) 
The governing equations in the core at O(1) are 

(lOa)-(1Oc). Thus, starting with (lOc), we can obtain 
the general solution form 

(b) Higher-order solution for A -+ 0, P = O(1) 
To go further we must examine the end-flows and 

the higher-order corrections in the core separately for 
the two cases p = 0( 1) and 6 = 0( 1). Here we consider 
P = 0( 1) where the first, O(l), terms in end-regions are 
governed by equation (15). Seeking a solution for B. in 
the ends as a simple power series expansion in x and z, 
and applying the boundary conditions (5b) on 0, we 
find only the trivial solutions at O(1) 

hotend: Ot= 1 

cold end: PO = 0. 

0, = Sl(i ; P)Z + soG; P) (214 Following the matching principles (20) we thus find 

I+6 = m(2;p) + n(2;p)z - ( h(i;p); + k(P;p$ > 2 

- (f’(;;P); + g’(i;P)go 
> 

Z? (21b) 

and 

wg =/‘(i;P); + gr(?;P); 

+ h(f;p) + k(l;p)z. (21c) 

If we assume the flow to be parallel at this qrder in A, 
see also Fig. l(b), 

m,n=constant;h=7,k=$, h, 
X X 

f’(2) =$ g’(x) = 3 

with h,, k,, fo, go = constant. Thus, applying boun- 
dary conditions (5a) at z = 0, 1 we can show 

f&=c,ln(f+P)+c,* (22a) 

$0 = - c,F’(z) (22b) 

where 

COPe solution at O(1): 

parallel flow 4, (z ) 
I 

I 1 

mnef end outer end 
region region 

FIc.l(b). Schematic diagram of the stream function at O(1). 

Theconstants c,, and co* must be obtained by matching 
with solutions in the end-regions. 

(hot end) 

+ c,* = 0 (cold end). 

The constants c0 and c,* which satisfy these matching 
conditions to O(1) are 

1 
co = 

P 

(-> 

and c$ = - 

In l+p 

The mismatch remaining at O(A), O(A’). . must be 
taken into account when matching at higher orders in 
the approximation scheme. 

At O(A), the solution for 8, in the ends may be 
shown, in a similar fashion, to be of the simple form 

6: Ax 
P 

(hot end) 

(25) 
co 

8;=-l+p -r (cold end), 

while the core solution (gl, I$~, 01) is identically zero. 
Since our interest is mainly with the core flow and with 
the Nusselt number, we do not attempt to solve the 
equations for w. and $, which arise at O(A) in the end- 
regions. 

Finally, at O(A’) in the core we have the governing 
equations 

de2 ab, _- 
TZ - a22 

+ 2c2 Gr F”WF”‘(4 
O (P + SY 

(26a) 

1 a2$, ~2=---_ 
p+ i a2 

aze, F"(z) 
----=ciGrPr------- a22 (p + _;y WC) 

WW 
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After some algebra, these yield general solutions which 
satisfy the boundary conditions at z = 0,l. 

A F(z) 
%Z = fi(x ; P) + ci Gr Pr G-+;i)z (27a) 

$ = -(i + ~)f;(i;~)F’(z) + ~c:,G~‘;(~~~~P;~‘) 

@7b) 

G”(z) + PrH”(z) 
;, = ,f;(;; p) j+“(z) _ 2~; Gr-.--__- ~. 

(p f i)3 

where* 

(27~) 

(28a) 

(2Xb) 

WC) 

In contrast to the 2-D case, the core flow is tiet 
parallel at O(A’). Furthermore, the Prandtl number 
appears not only within the product GrPr, as it does in 

the 2-D case, but also has a more complicated 
influence in Gz and w2. The function fi(x”, p) must be 
obtained by matching the core- and end-flows at 
O(A’). Fortunately, this may be done quite simply 

without any need to solve explicitly for the tempera- 

ture function e2 or the streamfunction/vorticity t+Gr, wr 

in the ends. At O(A*), the matching condition on % in 
the hot end is simply 

cox2 
-f. + f2(2; p) + c$ Gr Pr -~--__ F(z) o Qh 

2P (p + AX)* * 
as A -to. (29) 

On the other hand, the governing equation for the end- 
region solution, %i, is 

_ 
1 

zz Co - Gr Pr ,-& z .‘$: 
p+Ax p 

(30) 
‘_ 

Integrating equation (30) with respect to z from z = 0 
to z = 1 and applying the boundary conditions for %i 
and Go at these points gives 

Thus 

and substitution for 6: from equation (29) gives 

It follows that 

(33) 

f;(i;/I) = KZ = 0 r331 

and this completes the core flow solution to 0( A’) for 
A -t 0 with p fixed. 

(c) Higher-order solutions for A + 0. 6 = O( 11 
Let us now turn to the limit A + 0 with d = O( I). We 

have already noted that this case appears more difficult 

than the limit A -+ 0, p = O(l) because the governing 
equations at O(1) in the end region do not obviously 
simplify when A --f 0. However, this apparent difficulty 

is easily overcome, and the problem can be reduced to 
a form which is comparable to that for /I = 0( I]. A 
simple motivation for this simplification follows from 
the observation that the core solution (22a) for 8, can 
satisfy the boundary-condition (5b) exactly at Y = 0. I. 
The result of putting 0, = I at 4 = 0 is just 

There is, of course, no guarantee that the form 
obtained in this way will be the same as that obtained 
by proper matching with solutions in the end-domains. 
However, this was shown to be true in the preceding 
case [cf. equations (24)] and will also be demonstrated 
in this section for A -+ 0, ti = O( 1). 

Assuming equation (35) to be correct for the mo- 
ment, the solution scheme in this second case is easily 
motivated. In particular, though 0, is clearly O(1) 
for A -0, p = O(l), the combination E: = {ln[pi 
(1 + p)]} - ’ is asymptotically small in the limit A ---f 0 

with 6 = O(l).t 
Anticipating the requirements for matching with the 

end-region solutions, this suggests the use of a double 
expansion of the form 



in place of equation (19). A similar form is then also 
required in the core 
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The match between @ and these end-soIutions equa- 
tions (40) and (41) is exact. 

The governing equations for the fluid motion (A, 
66) are obtained by substitution of equations (40) and 
(41) into (39b, c), i.e. 

With the expansion (36), we see from equations (16)- 
(18) that 

in the end-regions, and thus 

@jk;: 1 (hot end) 

(38) 
&$=O (cold end) 

as before. The result of matching equations (38) and 
f22a) is the expression (35) for the term at i = 0, k = 1 

in equation (3 t), and the corresponding solution in the 
core, i.e. (& $i, &A), is precisely equation (22) with co, 
c$ given by equation (24). Thus, at first-order, there is 
no difference between the solutions for A --+ 0 with 
p = O(l), and A -+ 0 with 6 = O(l). 

The mismatch between equation (35) and & [i.e” 
(35)] is remedied at k = 1 in the expansion for (&, $0, 
c&,). Substituting equation (36) into equations (16)- 
(18) and ~uating terms of equal order in (ln@:pl 
(1 -+- p)]t-’ for i = 0, we find 

f39a) 

A general solution of equation (39a) can be obtained 
by standard methods 

which satisfies boundary conditions at z = 0,l. The 
boundary conditions at x = 0 and x = A-’ plus 
matching with ~~~ln~~/(i -t p)]}-“, then yields 

and 

and matching with the core solution‘ We have noted 
that the term on the right hand side of ~uation (45) is 
due to thermal convection. It may, at first, seem 
surprising that a convection contribution should arise 
in the end region at O(l), with respect to A, when the 
first contribution of convection in the core will only 
appear at CL?@‘) [cf. equations (6-8)]. However, we 
shall see that there is an exact match between 8: and 
this first convection term in the core. To demonstrate 
this fact, we will not require a complete solution for 86; 
only its asymptotic form for large x. This may be 

(41) obtained very easily by making use of the asymptotic 

2 a$; vz s;i I ~ _._..~ = 

x+6 ax - (x + S)&. (42) 

These nan~homogeneous equations are to be solved 
subject to the boundary conditions 

plus matching with (I&, &) ~ln~~/(l + P)])- i, e.g. 

Although a closed-form analytic solution may be 
obtained for equations (42)+44), we do not display it 
here as it is not essential to the analysis which follows. 

Righer order solutions will also exist for i = 0 in the 
end regions owing to the fact &hat &,@/dz is nonhero. 
Indeed, the velocity field corresponding to I& acts as a 
convective ‘source’ in the governing differential equa- 
tion for &, while @ drives the flow associated with li;$ 
In turn $i yields 0: and so on for larger values of k. We 
shall explicitly consider onfy &$ which represents the 
first direct contribution of convection in the end- 
regions. The governing differential equation for @ can 
be obtained from equation (18) and is 

with homogeneous boundary conditions 
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form for I,&; from the matching condition (44) for large 
x. This yields the differential equation 

for x >> 1, and it follows that 

(.x >> 1 f, (46) 

Transforming to the core variables i and p, this 
becomes 

(47) 

and the mismatch with 6, is seen to be 
O~~‘/~ln(~/l + p)12j. Although the higher-order 
terms, 02, gz.. . yield a further mismatch with the core 
solution &, it is of smaller magnitude, O(AZ/[ln 
(p/t -I- p)j21, and we shall not consider these terms 
here. 

Turning now to the core region, we have so far only 
discussed the terms @, $4 and LI& The differential 
equations and boundary conditions for i = 0 and 
k 2 2 and For i = 1 with k 2 1 are ali homogeneous 
and it thus follows that any nonzero solutions for these 
values of i and k would have to be generated through a 
mismatch at O(1) or O(A) between &a, $, or 6, and the 
solutions in the end-regions. In view of the fact that no 
such mismatch exists, it follows that 

&=o k>2 

(48) 
@=o kZ 1. 

The first nonzero correction to (&, 6, and &,) thus 
arises at O(A*) with k = 2, and is due to the appearance 
of nonzero convection terms in the governing equa- 
tions. Since the core solution is identical to that of the 
preceding section through terms of O(1) in A, the 
relevant solution is just equation (21). This must be 
matched with the end solution for large x, equation 
(41), to obtain fi. The resuft is 

.fi = 0, 

which is identical to that previousiy obtained for the 
case A -+ 0 with p = O(1). 

Thus, we have shown that the solution in the core 
region through terms of 0{A2/[ln(p/l + p)]‘} is 
identical for the two limiting cases A --t 0 with p = 0 
(1) and A -+ 0 with 6 = O(1). In view of the differences 
in the end regions [cf. equations (9)-(11) and (Is)- 
(17)] this seems to us to be a rather unexpected result. 

4. DISCUSSION AND DETERMINATION OF 

THE NUSSELT NUMBER 

We have seen that the core solution, through terms 
of O{A*I[ln(p/l f P)]“), is identical for the two limits 
A -_) 0, p = O( 1) and A -+ 0,6 = O( 1). The temperature 
dist~but~on and streamfunction are 

and 

.- 
2 

G(z) Jr PrH(z) 
+ 

f,) + AxY 

The corresponding velocity components are 

1 @, z) = . .._._ “_.“.. F”(z) ._.--. -._ 
p I- Ax 

2Gr A2 G’(z) + Pr H’(z) _ 
(P$AF 

+ __. 151a) 

and 

G(Z) f Pr W(z) ---.‘~-.“~-.. + . 
(P c AxI 

@lb) 

The first term in equation (49) is the temperature 
profile due to heat conduction, whereas the second 
term is the first contribution from heat transport by 
convection. The form of the solution for 6 is similar to 
that found by Cormack et al. [3] for the 2-D case ; in 
particular, the z dependence of the convection term is 
identical. However, there is an additional dependence 
of the convection term on lateral position, X, which did 
not appear in the 2-D case. More striking are the 
changes in the velocity fieid. It may be seen from either 
equation (SO) or equation (51) that the core motion is 
only unidirectional at the first approximation, and this 
contrasts sharply with the 2-D case where the core 
motion was unidirectional and preserved in form at all 
levels of approximation. Furthermore, the z- 
dependence of the convection term in equation (51a) 
depends on Pr, and this also represents a change from 
the 2-D problem. In particular, the convection contri- 
bution in the present case is asymmetric in z by an 
amount which depends on Pr. The function F(z) [and 
F”(z)], see Fig. 2, which contributes to Bat O(A’) and u 
at O(1) is identical to the function which plays the same 
role in the 2-D theory. The functions G(z) and H(z) 
which appear in the velocity component, W, are plotted 
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FIG. 2. Velocity profile F”(z) at O(1) and correction F(z) to the 
FIG. 3. Corrections G(z) and H(z) to the stream function 4 and 

temperature profile at 0(.4’). 
to the velocity profile i at O(A’). 

in Fig. 3. As noted above, these functions are not 
strictly symmetrical about z = ). Figure 4 shows the 
corresponding corrections G’(z) and H’(z) to the 
velocity component u at O(A’). In Fig. 5, the composite 
profiles G(z) + Pr H(z) and G’(z) + Pr H’(z) which 
appear in w and u, respectively, are plotted for Pr = 7. 

The solutions (49) and (50) can be used to calculate 
the Nusselt number relating to the total heat flux due 
to conduction and convection between the two cylin- 
ders of the annular domain 

Nu = e 
27r/lr,(T, - T,) 

where, in dimensionless form, 

Q = 2nlh(T, - T,) 

(52) 

-6 - 

-a - 

X -(~+i)$+GrPr$; dz. (53) 
-I 

Note, that 0 is independent of z? since the top and 
z- 

bottom of the cavity have been assumed to be in- 
sulated. Substituting for I$ and $ from equations (49) 

FIG. 4. Corrections D’(z) and H’(z) to the velocity profile u* at 
O(A’). 

and (50) we see that Nu can be calculated to 0(A3) 
with the information available. A convection cor- 
rection at 0(A5), due to the O(A’) term in $ can also be 60 - 

obtained, but is incomplete since higher order cor- 
rections are not known for 8. Thus, to 0(A3) we obtain 

I 
40 - - 01. 

-03 
A :: 

Nu = “g g 20 - -02 

l+P 

( > 

4 0.1 
pln ~ t 

0 
P 

% 0 

x 

{ 

1 + 2.76x 1O-6 

where 

I :: 
.-m s * 
B 
z 

s z-1 FIG. 5. Corrections W’(z) = G’(z) + Pr H’(z) and W(z) = G(z) 

2.76 x 1O-6 = [F’(z)]‘dz. 
+ Pr H(z) to the velocity profiles u*(z) and G(z), respectively at 

n=o O(A’) where the Prandtl number is Pr = 7. 

H.M.T. 2315-o 
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For re fixed and r,, ---t rC for A CC 1, the 3-D cavity 
reduces to the 2-D cavity and it is therefore of interest 
to calculate the limiting form for Nu. This follows 
simply from equation (54) by noting that 

The result is 

Nu I,,-,r -+A[1+2.76~10-‘(GrPrA)*+...]. 

This is identical to the result given by Cormack et 

a1.[3,5], with the exception of the constant 2.76 x 10e6 
which was mistakenly reported as 2.86 x 10e6 in the 
previous analysis. 

In the opposite limit rc is fixed and r,, + 0, i.e. p + 0, 
the Nusselt number Nu -+ -L for fixed A. This can 
easily be seen by using an approximation for the 

logarithm function 

With the temperature difference fixed at Th - T,. the 

and L. G. LEAL 

Nusselt number must become very large in order to 
maintain a finite heat flux when the surface area of the 
inner cylinder goes to zero. 
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CONVECTION NATURELLE DANS LINE CAVITE 
ANNULAIRE PEU PROFONDE 

R&m&On considere le probltme de la convection naturelle dans une cavit6 annulaire et peu profonde 
avec des parois interne et externe diffkremment chauffkes. Par rapport au probleme bidimensionnel de 
Cormack, Lea1 et Imberger (1974), la structure de l’tcoulement diffkre de deux faCons importantes. D’abord le 
coeur de l’&oulement est seulement parallBe B O(1) dans l’anneau. Ensuite, le rayon fini du cylindre intkrieur 
fournit une troisitme Bchelle de longueur en plus de h et (r, - r,,). L’tcoulement correspond ;i deux rtgimes 

distincts a la limite asymptotique A = h/(r, - r,,) + 0. La solution dans le coeur est diveloppee a O(A’) et les 
risultats asymptotiques sont obtenus g 0(A3) pour le nombre de Nusselt. 

FREIE KONVEKTION IN EINEM FLACHEN RINGFORMIGEN HOHLRAUM 

Zusammenfassung--Das Problem der freien Konvektion in einem flachen, ringftirmigen Hohlraum mit 
unterschiedlich erwarmten inneren und LuBeren W&den wird betrachtet. Verglichen mit dem 
zweidimensionalen Problem bei Cormack, Lea1 und Imberger [3], weicht der Strdmungsverlauf in zwei 
Punkten bedeutend ab. Erstens ist die StrGmung im Kerngebiet des Ringraums nur von 1. Ordnung parallel. 
Zweitens stellt der endliche Radius des inneren Zylinders neben h und (r,-rh) einen dritten 
LangenmaRstabsfaktor dar. Deshalb bestehen fiir die Striimung zwei Bereiche mit dem asymptotischen 
Grenzwert A = h/(r, - rk) -+ 0. Die LGsung fiir das Kerngebiet wird korrekt von Ordnung (A2) entwickelt, 

und fiir die Nusselt-Zahl erhilt man asymptotische Ergebnisse, die bis Ordnung (A’) giiltig sind. 

ECTECTBEHHAR KOHBEKLIMII B Y3KOM KOJIbUEBOM 3A30PE 

AHHo’ramm ~ MCCJIeflyerCa eCTeCTBeHHaR KOHBeKUHa a y3KOM KOJIbneBOM 3a3OpC npH HiWUXYHH 

PlJHOCTA reMnCpaTyp MeXny BHyTpeHHeii H BHemHeii CTeHKaMH. CTpyKTypa nOTOKa HMeeT L,Be OTJIH’(H- 

TenbHble oco6eHHocTH no CpaBHeHH‘O C .4ByMepHOfi 3UlaW6 KopMaxa, nXJlR H Mhl6eprepa (1974 r.). 
BO-nepBblx, anpo nOTOKa napannenbH0 TOnbKO npH O(1) B Konbueo6pasHoM CJIOe. M BO-BTOpbIX, 
noMHMo h w (r, - r,,) HMeeTca -rpe~ai’i Macmra6 QnHHbI, npeflCTaB,IeHHbIii KOHeVHbIM paJ,HyCOM 

BHyrpeHHero uenrol~pa. ~O~TOMY a aCHMnTOTHqeCKOM npenene A = h/(r, - rh) + 0 MOXHO 4eTKO 

BblnenHTb ,naa pemHMa. Pemetnie ma nnpa cnpaeennaeo BnnoTb no o(A2), a acWMnToTHqecKHe 

3HaqeHUa, nonyqeHHble L~JIR qHCna HyccenbTa, CnpaBennHBbI Bnno’rb no O(A?. 


